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Abstract

Maps are well recognized as an effective means of presenting and communicating health data, 

such as cancer incidence and mortality rates. These data can be linked to geographic features like 

counties or census tracts and their associated attributes for mapping and analysis. Such 

visualization and analysis provide insights regarding the geographic distribution of cancer and can 

be important for advancing effective cancer prevention and control programs. Applying a spatial 

approach allows users to identify location-based patterns and trends related to risk factors, health 

outcomes, and population health. Geographic information science (GIScience) is the discipline 

that applies Geographic Information Systems (GIS) and other spatial concepts and methods in 

research. This review explores the current state and evolution of GIScience in cancer research by 

addressing fundamental topics and issues regarding spatial data and analysis that need to be 

considered. GIScience, along with its health-specific application in the spatial epidemiology of 

cancer, incorporates multiple geographic perspectives pertaining to the individual, the health care 

infrastructure, and the environment. Challenges addressing these perspectives and the synergies 

among them can be explored through GIScience methods and associated technologies as integral 

parts of epidemiologic research, analysis efforts, and solutions. The authors suggest GIScience is a 

powerful tool for cancer research, bringing additional context to cancer data analysis and 

Corresponding author: Liora Sahar, PhD, Geospatial Research, Statistics and Evaluation Center, American Cancer Society, 250 
Williams Street, Atlanta, GA 30303; liora.sahar@cancer.org. 

CONFLICT OF INTEREST DISCLOSURES
Joseph E. Bauer is a scientific reviewer and serves on the Cancer Journal Editorial Advisory Board. Liora Sahar is the Scientific 
Director for Geospatial Research within the American Cancer Society. The remaining authors had no disclosures.

HHS Public Access
Author manuscript
Cancer. Author manuscript; available in PMC 2019 August 01.

Published in final edited form as:
Cancer. 2019 August 01; 125(15): 2544–2560. doi:10.1002/cncr.32052.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



potentially informing decision-making and policy, ultimately aimed at reducing the burden of 

cancer.
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INTRODUCTION

Geographic Information Systems (GIS) are hardware, software, technologies, and tools that 

enable the storage, retrieval, visualization, and analysis of geographic features and 

associated data. Oftentimes, GIS is superficially understood as merely mapping data. 

Historically, the early epidemiologic use of mapping provided the foundation for 

understanding the relationship between geography and health, and examples date back to the 

1800s. Dr. John Snow’s map of the 1854 London cholera outbreak, with its clustering of 

deaths around the Broad Street water pump, is likely the most well known historic map.1–3 

Although the earliest maps were dominated by infectious diseases like typhoid and cholera, 

there are several early maps illustrating the distribution of cancers. These include the 1870 

map by Haviland of cancer mortality rates in Britain,4,5 Power’s map illustrating the precise 

location of cancer cases in a small British village from 1872 to 1888, and Green’s 1908 map 

illustrating cancer mortality in relation to coal-burning and wood-burning areas in France.4 

The goal of those early cancer maps was to reveal disease patterns in relation to local 

environmental factors with the hope of shedding light on disease etiology.

Over time, GIS has become much more information-rich and scientifically rigorous, and GIS 

technologies have greatly simplified the compilation of health maps. However, the power of 

GIS is not just in the aesthetic cartographic display of health data but also in the ability to 

link attribute data (properties of the feature) with the geography. GIS provides the capability 

to visualize such attributes beyond traditional charts and graphs alongside features on the 

map. Linking these attributes by geography makes understanding and interpretation simpler, 

allowing consumers of mapping products the ability to identify social and demographic 

patterns and trends. Furthermore, with advanced spatial statistical methodologies, users may 

avoid the subjective visualization and interpretation of data and instead have objective, 

quantitative measures that support and reveal the underlying spatial relationships of both risk 

and potential confounders.

GIS has greatly evolved while incorporating new technologies, such as computers, 

computer-aided design, and databases along with the integration of methodologies from 

disciplines such as statistics, economics, computer science, and others,6,7 to emerge as the 

field of geographic information science (GIScience).8,9 GIScience is often defined using the 

bylaws of the University Consortium for Geographic Information Science as “the 

development and use of theories, methods, technologies, and data for understanding 

geographic process, relationships, and patterns. The transformation of geographic data into 

useful information is central to geographic information science.”9 This collaborative, 

interdisciplinary approach provides opportunities to further examine relationships and 
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interactions among health outcomes, the physical environment, and various socioeconomic 

and other risk factors to advance cancer-related and other health-related research.10

In this review, we present and discuss relevant geospatial concepts for consideration when 

planning and designing cancer research. The sections below provide an overview of popular 

topics in the spatial epidemiology of cancer with the viewpoint that an interdisciplinary 

approach is required to advance cancer research. We review important topics, including 

spatial data for cancer research, cancer mapping and visualization, and advanced spatial 

analysis. These topics help to address questions about what is special or unique about spatial 

data, which types of spatial data can be used for cancer research, and how spatial data can be 

used for cancer research to complement traditional analysis approaches in epidemiology. 

Each section discusses the current state of the art, issues, limitations and potential solutions, 

and available resources.

This introduction to geospatial concepts is meant to enable researchers and practitioners to 

recognize the potential and value of incorporating a spatial approach into their work. It also 

allows researchers to evaluate whether they have sufficient knowledge and tools or whether 

they need to seek the assistance of a GIS professional. We lead the reader through the 

process of identifying and assessing potential sources of spatial data and their associated 

limitations, through visualization of the data, spatial analysis, and the advantages of utilizing 

advanced spatial-statistical analysis. Spatial analysis enables researchers to address 

geographic discrepancies, which often are driven by racial or social disparities, and to 

augment traditional exploratory mapping and visual interpretation by testing geographically 

based hypotheses. We also describe methodologies, available tools, and best practices to 

visualize, understand, and communicate cancer risk factors and disease burden.

SPATIAL DATA FOR CANCER RESEARCH

Geocoding Cancer Data

Spatial data for cancer research span numerous sources with inherently different 

characteristics, including type, format, and geographic scale. Such data can also be the result 

of geocoding addresses, which usually is the first step when using cancer registry data. 

Geocoding is often defined as the process of converting address information into geographic 

coordinates, such as latitude and longitude.11 The process of geocoding has been well 

studied,11–27 along with the effects that geocoding errors and inconsistencies can have on 

the analysis and visualization of cancer data.16,24,28–54 Geocoding tools and services are 

now widely available to the cancer community,17 but care needs to be taken when choosing a 

geocoding service,24,33,40 passing address data confidentially to that service,55–59 and 

interpreting the results.16,28,32,34,38,39,44,48,52,60–62

Although this may appear to be a straightforward process, researchers should be cognizant 

of factors that influence the geocoding results and should be careful when selecting 

geocoded records for analysis. To represent the geographic distribution of cancer registry 

data accurately and/or to have confidence in the results of a spatial analysis, certainty and 

spatial accuracy depend fully on the geocoding results. Users need to be aware of the 

elements of the geocoding system and should consider the associated quality and accuracy, 
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which may have important implications when interpreting results.63 Therefore, proper 

geocoding techniques and careful attention to locational accuracy are fundamental to 

mapping and geospatial analysis.

The geocoding system—A geocoding system implements the geocoding process to 

produce geographic output (or geocoded data) by matching the input data (usually 

addresses) to a reference layer (such as streets). Most geocoding systems contain the 

components presented in Figure 1 and operate in a similar fashion.11,14,17 These components 

work together to produce output geocodes, and each component affects the accuracy of each 

geocode and the overall level of accuracy of the geocoding system. The first component, 

input data, is the text of the postal address records about patients, hospitals, or other features 

or entities. The second component, reference data, consists of geographic data files 

describing roads, parcels, building points, ZIP codes, and other geographic objects used to 

compute a geographic output for a given address. A geocoding system may use 1 or multiple 

(composite) reference layers, such as address points, parcels, street segments, ZIP codes, etc. 

These data can be purchased and/or obtained for free. The quality of the input data and the 

reference data set greatly influences the completeness and accuracy of the geocoding results. 

Address matching is the third component, in which the text for each address is processed 

using several well established steps, referred to as address parsing and address 
normalization/standardization, followed by a matching algorithm.11,14,17 The result is a set 

of potential match candidates (point locations) for a given address. This can be an iterative 

process, which may require relaxing the matching criteria until a match is identified or 

asking the user to match a point manually on the map. A match can be along a street 

segment, the centroid of a ZIP code, the centroid of a county, etc. The final component, 

output data, comprises the geocoded results. At a minimum, geocoding results include a 

geographic representation (commonly, latitude/longitude), and some form of metadata about 

the quality of the geocode.

Geocoding quality—Most geocoders provide match rates and match type as 

metrics18,39,52,64,65 to describe the quality of the results. Match rates characterize the 

percentage of geocodes that the system produced out of the total number of records that it 

was asked to process and are not useful for assessing fitness for use at the per-record level. 

Match types are important for each geocode, especially because a composite geocoder may 

produce more than 1 result. For example, a geocode marked as a county-level match type is 

not as accurate as a building centroid-level match. Clearly, including records matched to a 

building with records matched to the centroid of a county can affect the spatial accuracy and 

can have significant implications for the results from any visualization or spatial analysis 

activities. However, evaluating these metrics is an important methodological step that is 

often overlooked.

Types of geocoding systems: Standards?—Currently, there are no standards for 

geocoding systems. Each system/service processes data differently, has different reference 

files and algorithms, and returns different associated metadata. The various geocoding 

services available to cancer researchers differ mainly in the location where geocoding occurs 

(standalone, desktop/online, cloud) and the cost of geocoding (free/fee-based). To the best of 
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our knowledge, the North American Association of Central Cancer Registries (NAACCR) is 

the first and only organization in the United States (and possibly the world) that has 

attempted to undertake a geocoding standardization initiative to ensure that all cancer data in 

the United States is processed in the same manner, with the same reference data and 

algorithms, and that the results are reported in the same fashion to ensure comparison and 

consolidation.

Once created, geocoded data provide the basis for visualizations and analyses useful for 

different applications, including understanding the geographic variation of cancer burden, 

interactions between risk factors and disease development, and identifying gaps in health 

services. For example, in the Atlanta metropolitan area, researchers quantified travel times to 

geocoded mammography and cancer screening program clinics using public transportation 

routes.66 This spatial analysis, called network analysis, is commonly used and provides 

important information for identifying disparities and improving access to screening and 

treatment services. NAACCR researchers developed a web-based application for processing 

travel time and distance using the US road network. Other systems exist that incorporate 

bicycle or public transportation routes and times.

Cancer Risk Factors

Data characteristics—In addition to spatial data resulting from geocoding, spatial data 

sets for characterizing cancer risk factors are available and are commonly used by 

researchers. Several key characteristics should be considered in describing and selecting 

these data. Of primary interest is the geographic level or scale of the data. Individual point 

location data are often available for some physical and social environmental factors. Cancer 

risk-factor data often are aggregated and are available at the state level, with some data 

available at the county, census tract, and ZIP code levels. When using aggregated data, 

researchers should be aware that original measurements may be lost, and the administrative 

boundaries may or may not align with project needs. Analysis at the ZIP code level (or the 

census-defined ZIP Code Tabulation Areas) can be problematic,67 mainly because ZIP codes 

are defined for mail delivery and may pose issues when used for other applications. Users 

should seek data at the geographic level that best aligns with the scale of the analysis. 

Careful consideration should be taken when integrating data at different geographic levels to 

refrain as much as possible from unnecessary assumptions, such as uniform distribution 

across a region. For example, instead of assuming uniform distribution of cancer cases 

across a county, the analyst can use census information at a subcounty level to identify areas 

of higher proportions of certain sex or age groups, as appropriate for the specific cancer, and 

accordingly assign cases and rates. Another important consideration is the time-period or 

temporal coverage of the data. Ideally, risk-factor data should be temporally aligned with the 

associated cancer data. If there is a temporal lag in the hypothesized effect, then historic 

risk-factor data should be considered. Recent data systems, such as the National Historical 

GIS,68 have begun to address issues of availability and harmonization of geospatial data 

sources over time. Data quality and reliability also are key attributes of cancer risk-factor 

data. Many data sources are based on sampled data, and the quality and reliability of such 

data can cause issues at smaller geographic levels.69 Another characteristic to consider is the 

availability and conditions of use. Much of the cancer risk-factor data are available for free 
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as public-use data sets. Other data sources may require a fee, a data use agreement, or may 

be available only in a controlled environment of a research data center. Finally, many public-

use data sets are modified to protect confidentiality by applying statistical methods, such as 

data swapping (switching values between records), cell suppression (excluding data), top 

coding (reporting values as “above” a certain threshold), and rounding.70

Analytic methods to develop cancer risk-factor data—Often, various analytic 

methods are used to develop geospatial cancer risk-factor data. When the original data are in 

the form of measurements at individual point locations, spatial techniques can be used to 

interpolate values for locations between measurement points.71 Alternatively, a spatial 

model can be constructed that predicts values for arbitrary geographic locations using the 

measured data points to construct and validate the model.72 When the original data are in the 

form of survey results or other area-based measures, spatial models and spatial smoothing 

methods (also described below; see Spatial Analysis), can be applied to fill gaps in the data.
73 Small-area estimation methods can be used to develop estimates for smaller geographic 

areas by combining information from multiple surveys.74,75 Statistical dimension reduction 

methods, such as principle component analysis and factor analysis, often are used to develop 

a single index or a set of factors to capture complex social environmental risk factors that are 

multidimensional in nature.76 Multilevel regression methods can be used to assess the 

impact of cancer risk factors that operate at different spatial scales.77,78 Because many 

cancer risk factors operate over an extended period, spatial-temporal analysis methods are 

needed to assess exposure as individuals progress through daily travel and residential 

mobility.79

Types of spatial risk-factor data—There are several important types of spatial data 

available for characterizing behavioral risk factors. Data on the geographic differences in 

cancer screening behavior are an important explanatory factor in the analysis of late-stage 

diagnosis rates and cancer mortality rates.80,81 Because smoking is a significant behavioral 

risk factor for many cancers, geospatial data on the rates of tobacco product use are 

important. Similarly, geographic data on tobacco policy regulations for smokefree 

workplaces, restaurants, and bars can provide information on possible levels of exposure to 

secondhand tobacco smoke.82 Because dietary behavior can be a risk factor for cancer, 

geospatial data on access to healthy foods also are important.83 Likewise, geographic 

differences in exercise rates, fitness levels, and obesity rates are important measures of key 

behavioral cancer risk factors. Finally, with the advent of human papillomavirus (HPV) 

vaccines and their potential for reducing cancer rates, geographic differences in HPV 

vaccination rates should be included as a key measure of behavioral risk factors.84

Spatial data for characterizing physical environmental cancer risk factors include data on 

various types of toxins and contaminants with either established or hypothesized 

carcinogenic properties. These types of data are generally categorized by their transport 

mechanism: air-borne, water-borne, and soil-based. Different methods are needed to develop 

estimates of exposure from each.85 Two environmental cancer risk factors that do not fit 

neatly into these categories are exposure to ultraviolet radiation and its link with 

melanoma86 and exposure to naturally occurring radon gas (Fig. 2) and its link with lung 
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and other cancers.87 Finally, the effects of physical environmental cancer risk factors often 

are moderated by gene/environment interactions.88

A growing area of geospatial cancer research is studying cancer risk factors related to the 

social environment. These social determinants of health refer to characteristics of an 

individual’s neighborhood and social context that influence health outcomes independent of 

individual characteristics. These social risk factors include specific neighborhood 

demographic and socioeconomic measures, such as poverty,89 or composite index measures 

of a group of demographic and socioeconomic factors.76 Key risk factors, such as access to 

cancer screening, diagnosis, and treatment services90 as well as obesity, access to healthy 

food, and exercise rates,91 are all important aspects and have been discussed before. 

Similarly, geospatial measures of neighborhood walkability92 and of sprawl93 often are used 

to assess social environmental risk factors. Other important neighborhood characteristics 

include urban/rural environment, levels of crime, neighborhood cohesion, and measures of 

social inequity, such as segregation, diversity, depravation, and discrimination.94

CANCER MAPPING AND VISUALIZATION

Cancer and cancer risk-factor data can be translated into points (eg, hospitals and patients), 

lines (eg, routes to treatments, roads), and polygons (eg, county cancer mortality rates) and 

represented on a map. Maps are a powerful means for visualizing data for cancer research 

and can illustrate spatial patterns and elucidate connections that may be incomprehensible in 

other formats. Visualizing the spatial distribution of populations in relation to screening and 

treatment centers or the patterns of cancer mortality and incidence in the context of place-

based factors furthers our understanding of the cancer burden and stimulates research 

hypothesis generation. An important example of the power of visualizing the cancer burden 

in the United States dates back to the Atlas of Cancer Mortality for US Counties.95,96 These 

maps allowed researchers, for the first time, to identify unusual geographic patterns in 

cancer mortality, subsequently stimulating studies to generate etiologic hypotheses and 

identify cancer sites that warranted special study. For example, high mortality rates were 

identified in counties with shipbuilding industries using US mortality atlases from the 1950s 

and 1960s. This led to the discovery of asbestos exposure as the cause of a specific type of 

lung cancer in World War II shipyard workers.97 With increasing amounts of geographically 

enabled cancer data and more sophisticated visualization methods, mapping continues to be 

an invaluable method for understanding cancer burden.

Mapping Qualitative and Quantitative Data

Maps can display both qualitative and quantitative data. Qualitative data express differences 

in the kinds of information collected, whereas quantitative data reflect amounts. For 

instance, quantitative maps can display the distribution of cancer rates and provide 

opportunities to explore whether rates fall within the norm for a given population. 

Qualitative maps can allow visualization of the types of available services in an area to 

evaluate access to care. Furthermore, examining qualitative and quantitative data 

simultaneously can be a powerful technique to recognize gaps in service or for allocation of 

resources, as depicted in Figure 3.98
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Given the facility of visualization, it is important to be considerate of cartographic standards. 

Cartographic guidelines98–101 provide practical and fundamental concepts for sound 

mapmaking. They present an overview of concepts, such as map scale, projections, data 

classification, and visual hierarchy. For example, individuals who are not familiar with 

GIScience may not be aware of the distortion incurred when converting the 3-dimensional 

globe into a 2-dimensional map. Different projections that display different distortions are 

available, whereas some are more commonly used.102 An improperly projected map may 

incorrectly portray the geographic distribution and density of data, leading to erroneous 

interpretation.

Mapping a Snapshot: Points to Polygons

A common first step in visualizing cancer data is generating dot (ie, point) maps, which can 

be generated when street address data are thoughtfully geocoded. Dot maps provide a first 

pass at visually assessing the distribution of data and should be designed carefully to protect 

confidential information. It is preferred that dot maps of exact addresses not be published 

and only used for inhouse, exploratory analysis. In addition, such maps can be misleading 

when not combined with population data, because a high concentration of points simply may 

be reflecting high population density. Although data-masking techniques exist to help 

protect confidentiality,98,103–105 not publishing dot maps is preferable.

The most popular way of visualizing cancer data is aggregating point data to some 

geographic boundary, such as county boundaries. One challenge when mapping aggregated 

cancer data is the modifiable areal unit problem (MAUP), in which the choice of areal unit 

can change the observed geographic patterns. For example, maps created at the census tract 

aggregation unit may produce different geographic patterns than those aggregated to county 

or ZIP codes.106

Aggregated data typically are visualized using choropleth mapping methods, with specific 

colors assigned to specified rate ranges based on defined groups (eg, quartiles). Several 

useful tools are available for color selection. Color Brewer107–109 (available at: http://

colorbrewer2.org/, Accessed March 21, 2019) provides easily distinguishable, predefined 

color ramps. Complimentary tools, such as Color Oracle (available at: http://

www.colororacle.org/) or other tools listed in https://www.color-blindness.com/

2008/12/23/15-tools-color-blindness/, simulate color-impaired–specific outputs (Fig. 4). 

Ultimately, the onus is on the researcher to make sound judgements regarding the color 

choices and breakpoints used to distinguish classes of rates based on the data’s distribution 

and levels of significance.

Rates based on small numbers of cases should not be displayed to protect confidentiality or 

to avoid unreliable estimates.110 Options are to observe the standard deviation of the range 

of rates (eg, confidence intervals) or to present only statistically significant, meaningful 

results. Other options include methods to aggregate or merge neighboring geographic units 

together until a userdefined population and/or number of cases is reached, minimizing the 

standard error.111–113 Several such algorithms are discussed below (see Spatial Analysis). 

Often, researchers need to display multiple layers of data and results from complicated 

epidemiologic and/or geospatial statistical analyses. Bivariate mapping techniques and 
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bivariate choropleth maps, depicting 2 variables, allow researchers to overlay additional data 

pertinent to understanding the context for cancer risk.107,114–116 Figure 5 provides an 

example of bivariate mapping of smoking rates and estimates of radon-attributable lung 

cancer mortality. GIS, online tools, and tutorials are available for creating bivariate 

choropleth maps.117,118

Mapping Trends Over Time

In addition to visualizing a snapshot in time, exploring trends over time is often important. 

Researchers can create a series of maps if data of the same quality and spatial scale are 

available across time. Micromaps119 offer additional means for linking statistical 

information to features and visualizing and evaluating spatial data patterns and temporal 

trends. An interactive, online tool developed by the National Cancer Institute (available at: 

https://gis.cancer.gov/tools/micromaps/, Accessed August, 2018) facilitates comparisons of 

multiple variables and associated risk factors across regions and time. Micromaps and 

graphs created using such tools are easily linked to identify trends in changes over space and 

time and can provide comparisons between rates (Fig. 6).

Interactive Mapping

The visualization of data does not have to be limited to static maps and there are numerous, 

easy to use interactive mapping software available. Besides free online tools, commercial 

products such as InstantAtlas (available at: http://www.instantatlas.com/, Accessed March, 

2018) and ArcGIS Online (available at: https://www.arcgis.com/home/index.html, Accessed 

March, 2018) facilitate the production of interactive maps and allow users to share and 

publish cancer data with interactive features. Users can link map data to graphs, tables, and 

charts and may generate animations to explore patterns over time. In addition, there is a 

burgeoning field of innovative data visualization techniques to explore relationships between 

multiple views, simultaneously exploring geographic patterns of cancer rates along with 

potential cancer risk factors, such as environmental exposures. For example, the New York 

State Department of Health offers an interactive dashboard enabling users to explore 

environmental facilities and cancer (available at: https://apps.health.ny.gov/statistics/cancer/

environmental_facilities/mapping/map/, Accessed March 25, 2019). Numerous online 

interactive cancer mapping applications are available, such as State Cancer Profiles, the 

American Cancer Society Cancer Atlas (available at: http://canceratlas.cancer.org/data/#?

view=map, Accessed March 20, 2019), NAACCR Cancer Maps (available at: http://

www.cancer-rates.info/naaccr/, Accessed March 20, 2019), and the US Cancer Statistics 

Data Visualizations (available at: https://gis.cdc.gov/Cancer/USCS/DataViz.html, Accessed 

March 25, 2019).

Beware of Mapping Limitations

Of course, there are limitations to visualizing cancer data. One of the greatest challenges is 

the spatial scale of available data. Often, cancer research is limited to aggregated rates with 

limited locational specificity. When analyzing rates at a county level, for example, there is 

the underlying assumption that rates across the entire geographic area are homogenous. 

Another limitation associated with most geographic enumeration units, such as county-level 

data, is inconsistent size (or area) throughout a state or the country. In addition, researchers 
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must use careful consideration when faced with incomplete case reporting or analyzing rare 

cancer data. Finally, depending on the spatial scale of the data, we may not be able to answer 

important questions crucial to understanding the distribution of the disease.

With the expansion of spatial statistical techniques and methods, such as spatial cluster 

analysis, geographically weighted regression,120,121 and mixed modeling methods, 

researchers can now explore complex relationships between multiple risk factors and 

changing patterns of disease over space and time. Through GIS, the results of these highly 

sophisticated methods can more easily and effectively be communicated. In the section 

below, we further explore spatial analysis methods that allow researchers to transition from 

the traditional, visual and subjective interpretation of data to more quantitative spatial 

statistical methods.

SPATIAL ANALYSIS

Cancer incidence, mortality, treatment, and survival vary by geography. These deviations 

have important implications for the development and implementation of prevention 

strategies as well as for further understanding the etiology of cancer.122 Spatial analysis is a 

statistical approach that can be applied to further understand the complex pathway of cancer 

development by integrating physical, social, and cultural environmental factors into the 

analysis.123 Researchers can apply a spatial approach to epidemiology to identify geographic 

patterns and test geographic hypotheses, postulate about a community’s health, focus public 

health action, and choose suitable prevention interventions.

Key Concept: Spatial Autocorrelation

A key precept in geography is Tobler’s law or the “first law of geography,” which states that 

“everything is related to everything else, but near things are more related than distant 

things”.124 In statistics, this is known as autocorrelation; and, in spatial statistics, it is known 

as spatial autocorrelation. Spatial autocorrelation is incorporated into different spatial 

analysis methods.125 General global tests, such as the Moran’s I and the Geary’s C are 

designed to assess spatial autocorrelation. These tests generally are used when the focus of 

inquiry is not on place itself but on determining whether the analysis needs to be adjusted for 

location. Epidemiologists might use this approach to assess the impact of poverty on 

neighborhood health.

Traditionally, epidemiologists mapped disease rates to identify high-risk populations, but 

rates in sparsely populated areas can be outliers or may be statistically insignificant, leading 

to unwarranted alarm or inappropriate disregard.126 Also, areas with small numbers of cases 

or small populations may not meet the threshold for statistical stability, but the differences 

still may have public health significance. Researchers may choose to adjust estimates toward 

neighboring values or toward a local mean using smoothing algorithms that incorporate data 

from neighboring or adjacent areas.127 As an extension of Tobler’s law, spatial smoothing 

assumes that rates are more similar and will not vary much between areas close to each 

other; therefore, differences among neighbors are likely because of random variations. 

Numerous smoothing methods exist128–130 that reduce random variation to more clearly 

demonstrate and evaluate spatial patterns, such as the true underlying distribution of cancer 
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rates. In addition, several methods have been developed for creating spatially adaptive 

cancer incidence, mortality, and survival map data.110,131–133 Unfortunately, using spatial 

smoothing to manage the variability of small numbers can sometimes mask true cancer 

patterns.

Identify and Assess Disease Patterns and Clusters

Other spatial analysis techniques are well suited for identifying and assessing geographically 

based disease patterns, such as addressing concerns about potential disease clusters. Spatial 

statistical methods like spatial regression algorithms and Bayesian space-time models also 

can quantify patterns and trends over space and time (spatiotemporal) and are available in 

different statistical applications (SAS [SAS Institute Inc, Cary, NC], R [R Foundation for 

Statistical Computing, Vienna, Austria], etc). Researchers at population-based cancer 

registries frequently respond to public cancer cluster concerns. SaTScan cluster detection 

free-ware (developed by Martin Kulldorff and Information Management Services Inc, 

Calverton, MD) uses spatial scan statistics134 to evaluate geographically based disease risk. 

This method generates circles (or ellipses) of various sizes and evaluates observed versus 

expected rate ratios (risk within vs outside the circles) to identify statistically significant 

“clusters” of disease rates, including clustering over time.135 Models to evaluate clusters are 

available for different data types, including the Poisson model for cancer rates, the Bernoulli 

and ordinal models for proportions like early versus late, and the exponential model for 

survival data. Recent work aims to extend the algorithm to detect linear,136 empty-center 

circular, and ring-shaped hotspots.137 Figure 7 illustrates how different models can help 

inform cancer control, depicting areas with higher than expected (Fig. 7, dark blue) versus 

lower than expected (Fig. 7, light blue) rates of colorectal cancer in Miami-Dade County, 

Florida, using the Poisson method and areas with higher than expected rates of late-stage 

versus early stage colorectal cancer (Fig. 7, purple hashing) using the Bernoulli method. 

Areas of lower or average expected incidence but high rates of late-stage versus early stage 

disease indicate areas that would benefit from increased population-based screening are 

circled in yellow. Areas with high rates of disease and late-stage disease are circled in 

orange and also may be good target populations for increased screening and important 

populations to evaluate, with the objective of gaining a better understanding of the risks of 

colorectal cancer. Colorectal cancer screening rates are well below public health targets, and 

such a combined approach can refine the focus of interventions and research to reduce 

cancer burden most efficiently.

Another common cluster analysis method is the Getis-Ord Gi* statistic,138,139 which is 

available within the ArcGIS software package (Esri, Redlands, CA). It identifies coldspots/

hotspots based on the “neighborhood” of each feature as derived from modeling spatial 

relationships among all features (like surrounding counties). Often, when using cancer 

mortality and incidence rates, we need to account for variations in feature (like county) size 

and/or the exclusion of some features because of suppression or missing data.140 One option 

is to quantify spatial relationships based on both userdefined distance and the minimum 

number of required neighbors.141 The result of the analysis includes the associated Z-score 

and P value, indicating the statistical significance of the cluster.139 If possible, researchers 

may consider multiple analyses using different methodologies to assess the consistency and 
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reliability of the results. The results from these analyses can be used further to identify focus 

areas for interventions. Figure 8 depicts potential areas for target screening interventions by 

overlaying Federally Qualified Health Centers (FQHC) over identified pockets of elevated 

mortality rates.140

In contrast to global tests, focused tests evaluate clustering around specific geographic 

locations. A focused test evaluates the pattern of disease frequency based on proximity to a 

specific geographic coordinate.142 The Lawson & Waller focused test, which is available in 

the proprietary software ClusterSEER (BioMedware, Ann Arbor, MA), detects clustering 

around a suspected point source of exposure.143 For example, Figure 9 illustrates the results 

from an analysis of bladder cancers in Michigan that can accommodate residential mobility,
143 in which red squares indicate industrial sites with statistically significant, higher rates of 

bladder cancer in close communities. Although it may be useful in some applications, this 

approach is relevant only if distance is a valid proxy for exposure.

Spatial analysis also can be applied to answer neighborhood-level research questions. For 

example, is a risk merely a reflection of the aggregate risk of individuals (composition), or 

do different areas have different risks (context)? Traditional statistical approaches in 

epidemiology can assess individual-level behaviors and outcomes and can be used in tandem 

with spatial analysis to assess compositional effects. For instance, to identify a high-risk 

community for targeted intervention, a standard logit model can be applied. However, if 

area-based and case-level variables are used to describe the community, then hierarchical 

modeling is most appropriate, because it includes a random effect to account for both the 

direct (composition) and contextual effects. Such models are available in most statistical 

packages. For instance, Bayesian spatial regression analysis is available in spatial packages 

in R (eg, R INLA, CARBayes, R2BayesX; R Foundation for Statistical Computing),144 and 

PROC GLIMMIX in SAS (SAS Institute, Inc), and several R packages can be used for 

hierarchical logistic regression models to model both census tract and county as both 

random and mixed effects (eg, nlme, lme4), with tracts nested within counties.

Spatial Analysis: Limitations

Spatial analysis is not without limitations. Today, the availability of spatial statistics software 

allows researchers to conduct prompt spatial analyses. However, care must be taken to 

understanding the underlying assumptions about the data to avoid erroneous results, and 

users should carefully and methodologically interpret the results. For instance, as mentioned 

above, the MAUP comprises 2 interrelated, geographically based problems.125 First, the size 

and shape of the study area affect the results: this is known as the zoning effect.28 The 

zoning effect is problematic because, like mapped results, results of spatial analysis can 

change, depending upon scale of the analysis. The spatial scan in SaTScan produces 

different results for different maximum scan window sizes. Because there is no clear optimal 

setting for scaling parameters,145 multiple scans should be run at various maximum circle 

sizes to identify the most persistent core for each cluster.145 Second, different results can be 

obtained at different units of analysis, such as block group versus census tract. This is known 

as the aggregation effect and can result in the loss of statistical power to detect clusters.146 A 

focused test can be used to test for spurious clusters caused by aggregation errors, such as 
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lumping together based on ZIP code centroid versus actual street address. Missing data also 

can affect spatial analysis, resulting in geographic confounding. It is becoming common for 

researchers to use multiple imputation methods to impute missing values like stage at 

diagnosis or insurance status and to use geographic imputation methods to impute missing 

locational data.147–149

DISCUSSION

This review discusses the evolution, current state, and trends of geospatial science for cancer 

research and serves as a high-level overview of important topics. A geographic approach is a 

natural companion to epidemiologic research, and the use of spatial epidemiology has 

increased as health data are now commonly geocoded and healthfocused spatial computer 

applications are available. This trend is expected to continue and grow as such applications 

become more user-friendly and as more professionals are exposed to spatial thinking earlier 

in their careers and/or as students. However, relevant conclusions hinge on understanding the 

limitations of the data and the methods as well as the suitability of a spatial approach to 

epidemiologic research.

Results and conclusions from a spatial approach can inform evidence-based decision making 

and public policy and can support the implementation of communitylevel interventions and 

efficient resource allocation. As discussed in the paper, a researcher can arrive at their results 

using a multitude of methods that also vary in sophistication, emphasizing the usefulness of 

the progression from visual interpretation of static and interactive maps to spatial analysis 

and spatial statistical methods. Maps are very useful tools of communication and can 

provide easy to share visualizations for identifying focus areas and gaps in service as a 

snapshot in time as well as for examining spatial and temporal trends. Spatial analysis can 

enhance cancer control activities by identifying geographic areas with high-risk populations 

to target public health interventions in communities. Incorporating spatial statistical 

methods, such as cluster detection, into existing disease surveillance activities allows 

programs to use results and base decisions on the distribution of disease to respond to the 

public’s concern about potential cancer clusters in a scientifically rigorous manner.

Spatial epidemiology affords taking an interdisciplinary approach to cancer research, and a 

“thoughtful research” approach should be used, recognizing the strengths but also the 

limitations and constraints of the data, methods, and technology. Spatial analysis and spatial 

statistical software packages evolve, making it easier than ever to execute complex and 

specialized spatial analyses. Although it is an encouraging trend, researchers should consider 

collaborating with a geospatial scientist and/or spatial statistician to ensure that results can 

be interpreted correctly and to avoid misinformation and unintended policy decisions and 

intervention outcomes. Regardless, the advantages of applying GIScience to cancer research 

and “spatially enabling” cancer researchers, can have a profound impact on understanding 

patterns and trends in incidence and mortality, providing screening and treatment services, 

implementing effective prevention programs, and addressing geographic disparities.
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Figure 1. 
This is a generalized schematic of the geocoding process.
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Figure 2. 
Radon levels are illustrated according to 1982 US county of residence from the Cancer 

Prevention Study-II. EPA indicates Environmental Protection Agency; GIS, geographic 

information systems; NHGIS, National Historical Geographic Information Systems; SEC, 

Statistics and Evaluation Center. Reprinted from: Teras LR, Diver WR, Turner MC, et al. 

Residential radon exposure and risk of incident hematologic malignancies in the Cancer 

Prevention Study-II nutrition cohort. Environ Res. 2016;148:46–54, with permission from 

Elsevier.87
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Figure 3. 
Qualitative versus quantitative data are displayed. On the right, the top 3 maps (qualitative) 

depict facilities by type, and the bottom 3 maps (quantitative) depict the number of facilities 

by county. Source: Centers for Disease Control and Prevention Cartographic Guidelines for 

Public Health.98
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Figure 4. 
Color schemes are depicted on a choropleth map of county lung cancer rates. Note that 

readers with deuteranopia cannot easily differentiate the red-green scheme.
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Figure 5. 
Age-adjusted smoking rates and estimates of radon-attributable lung cancer mortality are 

illustrated. The darker purple counties represent the areas with the lowest smoking rates yet 

the highest estimated radon-attributable lung cancer deaths. The dark green counties are 

those areas with the highest smoking rates and the highest radon-attributable lung cancer 

mortality. The map was created by Andrew S. Berens at the Geospatial Research Analysis 

and Services Program (GRASP), Division of Toxicology and Human Health Sciences, 

Agency for Toxic Substances and Disease Registry, Centers for Disease Control and 

Prevention, Atlanta, GA.
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Figure 6. 
This series of micromaps illustrates changes in breast cancer mortality rates in New Jersey 

(10-year aggregated rates) over 20 years. Maps 1 and 3 depict the percent change (%change) 

in blacks and whites over the 2 time periods, and maps 2 and 4 depict the actual change in 

rates. N/A indicates not applicable. Data source: National Center for Health Statistics, CDC.
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Figure 7. 
Combined results from Poisson and Bernoulli cluster detection are depicted. Circled areas 

were identified for colorectal cancer screening prevention based on the overall risk of 

colorectal cancer and the risk of late-stage disease.
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Figure 8. 
Colorectal cancer (CRC) mortality rate hotspots are illustrated with a Federally Qualified 

Health Center (FQHC) location overlay. ACS indicates American Cancer Society; FOIA, 

Freedom of Information Act; GIS, Geographic Information System; HRSA, Health 

Resources and Services Administration.
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Figure 9. 
Results of focused cluster detection of bladder cancers around industrial sites are illustrated. 

Qit P value refers to the significance of the local space and time Q-statistics. Adapted from: 

Jacquez GM, Shi C, Meliker JR. Local bladder cancer clusters in southeastern Michigan 

accounting for risk factors, covariates and residential mobility. PLoS One. 

2015;10:e0124516.143
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